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ABSTRACT – The double-lunar swingby (DLS) of the Magnetospheric 
MultiScale (MMS) mission is required, within a tight delta-V budget of 90 m/s, to 
change significantly the orbital elements of an initial orbit: to increase 
dramatically its inclination (by ≈ 570), decrease significantly its eccentricity 
(from 0.96 to 0.66) and keep its semimajor axis approximately constant. We 
obtain double-lunar swingbys that accomplish this task with a remarkably low 
delta-V of 50.3 m/s. Our approach is semi-analytical: a derived analytical 
expression is used to determine that a non-symmetrical targeting scheme is best 
suited for this problem.  

KEYWORDS: MMS, double-lunar swingby, DLS, non-symmetrical targeting, 
gravity assists, scattering parameters.   

INTRODUCTION  

The Magnetospheric MultiScale (MMS) mission is scheduled to be launched sometime in the summer of 
2008. The mission will consist of four spin-stabilized spacecraft designed to fly in a tetrahedral formation. 
The scientific purpose of the mission is to give a better understanding of the plasma processes occurring 
in the Earth's magnetosphere by using the formation to obtain differential measurements of the various 
particles and fields of interest (see [1,2] for more details).  Central to this concept being successful is a 
baseline mission design that can ensure passage through desired regions of the magnetosphere while 
simultaneously observing the requirements concerning spacecraft delta-V budget, health and safety.  The 
baseline mission is defined to be the orbit about which the formation will fly regardless of the distribution 
of the individual spacecraft. The current MMS mission design calls for a baseline comprised of 4 distinct 
mission phases.  Three of these phases (1,2, and 4) are highly elliptical orbital states. This paper focuses 
on phase 3: a double-lunar swingby (DLS) that transfers phase 2 to the final orbit state (phase 4). 

 

 
1This work was performed under NASA/GSFC contract NAS5-01090, task 93. 
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In the next section, we discuss all the phases of the mission but focus primarily on phase 3 (i.e. the DLS 
portion). To guide us in the design of the DLS, we derive an analytical expression that determines the 
final semimajor axis after a lunar swingby as a function of three parameters measured at periselene 
(referred to as scattering parameters) and the initial semimajor axis. Armed with this expression, we 
reason that a “non-symmetrical targeting scheme” is best suited for meeting the tentative goals of the 
MMS mission. The non-symmetrical targeting scheme is defined and discussed in detail in the section 
“Applying the Analytical Expression: Non-Symmetrical Targeting”. Our numerical results show that our 
approach leads to acceptable solutions. 

PRELIMINARY TARGETING GOALS OF MMS  

The MMS mission consists of 4 distinct phases, taking the spacecraft from the low latitude inner 
magnetosphere, through the middle magnetosphere, into the deep magnetotail and finally into the high 
latitude magnetosphere. Each phase is punctuated by maneuvers that transition the spacecraft from one 
phase to the subsequent one. In addition, during all phases, the 4 MMS spacecraft fly in formation 
forming a tetrahedral structure at apogee (where applicable).  For notational clarity, we take as Phase 0 
the orbit the spacecraft occupy upon separation from the launch vehicle.  This orbit has a perigee and 
apogee radius of 1.2 and 12 Earth radii (Re), respectively, an equatorial inclination of approximately 28.5 
degrees, and an argument of perigee of zero. The right-ascension of the ascending node is picked so that 
the desired Sun-Earth-spacecraft geometry is established [3]. The inclination of this initial orbit is 
immediately lowered from approximately 28.5 to 10 degrees, marking the beginning of Phase 1.  Phase 1 
persists for approximately 12 months, sampling low-latitude magnetospheric regions in both the sun- and 
tail-ward directions.  At the end of Phase 1, a series of apogee-raising maneuvers are performed to boost 
the apogee from 12 Re to 30 Re. The Phase 2 orbit apogee lies entirely tailward, moving from dawn to 
dusk, and lasting 110 days. Throughout Phases 1 and 2, perigee maintenance maneuvers are needed to 
counteract the lunar perturbations that drive the radius of perigee down.  At the end of Phase 2, another 
apogee raising maneuver is performed which raises the apogee distance to lunar distance, approximately 
62 Re. This marks the beginning of Phase 3 i.e. the DLS.   

The tentative goal of the DLS of MMS is to transfer the end of the phase 2 orbital state with perigee 1.2 
Re, apogee 62 Re and inclination ∼10-200 (with respect to the equatorial plane) to the phase 4 orbital state 
with perigee 10 Re , apogee 50 Re and inclination 900 (with respect to the ecliptic plane). The delta-V 
allocation for phase 3 is ≈ 90 m/s. This is much less than the amount of delta-V required to accomplish 
the dramatic change in inclination using maneuvers. Therefore, the DLS must accomplish most of the 
inclination change. The DLS also rotates the line of apsides. The orbital states for each phase are 
summarized in Table 1. Note that phase 3 and phase 4 have approximately the same semimajor axis (they 
differ by 5%) whereas their inclination and eccentricity differ significantly.  

Table 1.  Orbital elements for each phase. Inclinations denoted by a (1) or a (2) are measured with 
respect to the equatorial and ecliptic planes respectively. 

Mission Phase Perigee 
(Re) 

Apogee 
(Re) 

Semimajor 
  Axis (km) 

Eccentricity Inclination 
(deg) 

Phase 0 1.2 12 42094 0.818 28.5(1) 

Phase 1 1.2 12 42094 0.818 10(1) 

Phase 2 1.2 30 99496 0.923 NA 

Beginning of Phase 3 
        (before DLS)           

1.2 ~62 201544 0.962 ∼10-20(1) 

Phase 4 10 50 191340 0.666 90(2) 

 2



GENERAL DESCRIPTION OF A DOUBLE LUNAR SWINGBY (DLS) 

In this section, we describe briefly a typical DLS where we define our terminology in preparation for our 
discussion on the DLS of MMS. For more details on double-lunar swingbys we refer the reader to the 
following papers and references therein [4,5,6,7,8,9]. The trajectory of a DLS is depicted in Figure 1 (the 
normal to the lunar orbit plane points out of the page). The spacecraft in an initial orbit with semimajor 
axis ai approaches the Moon, undergoes the first lunar swingby, moves in an outer loop with semimajor 
axis aout, re-encounters the Moon for the second lunar swingby and terminates with a final semimajor axis 
af (the initial and final orbits actually have apogees that extend beyond the lunar orbit but they are drawn 
in figure 1 with smaller apogees to avoid cluttering the diagram). The time between lunar encounters is 
such that the Moon undergoes a minimum of one period. This sequence of events rotates the line-of-
apsides, one of the well-known and useful properties of a DLS [4].  

The first and second lunar swingby (or flyby) are qualitatively different. Let Vm be the linear velocity of 
the moon (with respect to the Earth), rp be the radius vector from Moon to periselene and γ be the angle 
between rp and Vm  (rp is not necessarily restricted to the lunar orbit plane).  At the first flyby, the moon is 
moving away from the spacecraft and 900 < γ ≤ 1800. This is called a trailing edge flyby and the spacecraft 
gains energy (i.e. the semimajor axis increases after the flyby). At the second flyby, the moon moves 
toward the spacecraft and 00 ≤ γ  < 900. This is called a leading edge flyby and the spacecraft loses energy 
(i.e. the semimajor axis decreases).   
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ANALYTICAL EXPRESSION FOR SEMIMAJOR AXIS AFTER A LUNAR SWINGBY 

We derived a simple equation that determines the semimajor axis a2 after a flyby in terms of three 
scattering parameters rp, γ  and V∞ and the semimajor axis a1 before the flyby. The equation is (see [10] 
for derivation) 

 
 1          1               4 V  V  cos ( γ ) m ∞
    =        +                                              (1)     
a2          a1              µE ( 1 + rp V∞

2 /µm ) 

where  

a1  = Earth-centered semimajor axis before flyby   

a2  =  Earth-centered semimajor axis after flyby 

V∞ = asymptotic speed of spacecraft with respect to the Moon  

γ = angle between the vector vm and the vector rp.  

rp = magnitude of  rp  

Vm        =           Moon’s linear speed as measured by the Earth (assumed constant) 

µE = Earth’s gravitational constant 

µm = Moon's gravitational constant 

 

The above equation (1) was derived in the zero sphere-of-influence approximation where the delta-V 
imparted by the Moon on the vehicle occurs instantaneously at one radius, namely the periselene. It also 
assumes the Moon to be moving in a circular orbit where the linear velocity of the Moon Vm is 
perpendicular to the Earth-Moon radius rm and where the magnitude of Vm is constant. Equation (1) gives 
good quantitative results (often within 5% of the full-integrated numerical results) but its main value lies 
in describing how a2 depends on the different scattering parameters: something useful as a guide for 
mission design. Equation (1) predicts correctly the main features of a trailing edge and leading edge flyby. 
For a trailing edge flyby, 900 < γ ≤ 1800, cos(γ) is negative and Eq.(1) predicts that a2 > a1 i.e. it predicts 
correctly that the semimajor axis increases and that the spacecraft gains energy. Note that for a trailing 
edge flyby, Eq.(1) predicts that the semimajor axis a2 increases if the radius rp at periselene decreases i.e. 
the closer to the Moon the more energy is gained. For a leading edge flyby, 00 ≤ γ < 900, cos(γ) is positive 
and Eq.(1) predicts that a2 < a1 i.e. it predicts correctly that the semimajor axis decreases and that the 
spacecraft loses energy. Note that for a leading edge flyby, Eq.(1) predicts that the semimajor axis a2 
decreases if the radius rp at periselene decreases i.e. the closer to the Moon the more energy is lost.   

APPLYING THE ANALYTICAL EXPRESSION: NON-SYMMETRICAL TARGETING 

The current MMS mission design requires that the final semimajor axis af after the DLS be 95% of the 
initial semimajor axis ai before the DLS i.e. that ai and af shown in figure 1 are approximately equal. This 
requires that the increase in semimajor axis at the first flyby be accompanied by a decrease at the second 
flyby of equal magnitude. The term in Eq.(1) responsible for changing the semimajor axis is Q ≡ 4VmV∞ 

cos(γ)/µE(1 + rp V∞
2/µm ). The sign of Q is determined by the sign of cos(γ). By inspecting Fig. 1, it is easy 

to see that cos(γ) is negative at the first flyby and positive at the second. If the magnitude of Q is equal at 
the first and second flyby, the positive and negative contributions at both flybys sum up to zero and ai and 
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af will be approximately equal. The parameter V∞  is almost equal at the first and second flyby (unless of 
course a maneuver is inserted between the two flybys). There are therefore two possible scenarios that can 
ensure that Q has the same magnitude at the first and second flyby. Clearly, one possible scenario is a 
symmetrical targeting scheme where the radius rp and |cos(γ)| at the first flyby is approximately equal to 
the radius rp and |cos(γ)| at the second flyby. However, a second scenario exists: a non-symmetrical 
targeting scheme where rp and |cos(γ)| at the second flyby are both smaller than at the first flyby (i.e. the 
magnitude of Q can remain constant if both rp and |cos(γ)| are decreased). 
Which targeting scheme will accomplish MMS goals better: the symmetrical or non-symmetrical one? A 
symmetrical targeting scheme will produce a final orbit with roughly the same shape as the original (i.e. 
the semimajor axis a and eccentricity e will not change considerably). However, MMS requires a 
significant change in the eccentricity e and inclination i after the DLS. Therefore, a non-symmetrical 
targeting scheme is required. The dramatic increase in inclination requires the Moon to impart a large 
delta-V at the second flyby: much greater than the delta-V imparted by the Moon at the first flyby. 
Therefore, rp  at the second flyby must be much smaller than rp at the first flyby. The procedure is 
therefore to target rp and γ at the second flyby constrained by the condition that the values of rp and 
|cos(γ)| are smaller than those of the first flyby. These constraints allow one to change the final 
eccentricity e and final inclination i while ensuring that the final semimajor axis is roughly equal to the 
initial one. The crucial point is that rp and |cos(γ)| should be significantly smaller at the second than at the 
first flyby.             

If one is interested only in a DLS that rotates the line of apsides, a symmetrical targeting scheme works 
fine. However, the DLS of MMS accomplishes something beyond the typical rotation of the line of 
apsides. It produces a dramatic increase in inclination i and a significant decrease in eccentricity e while 
simultaneously keeping the initial and final semimajor axis roughly equal. A non-symmetrical targeting 
scheme is therefore needed. 

AN ABSOLUTE LOWER BOUND ON THE DELTA V 

When the spacecraft emerge from the second lunar swingby, the MMS goal is to obtain a final orbit with 
perigee10 Re, apogee 50 Re and inclination 900 (with respect to the ecliptic plane). The Earth-Moon 
distance ranges from 56.9 Re to 63.6 Re so that the apogee can never be less than ≈ 57 Re when the 
satellite emerges from the second lunar swingby. A standard burn at perigee along the velocity direction 
requires a Delta V of  ≈ 33.5 m/s to change the apogee from 57 Re to 50 Re. The value of 33.5 m/s can be 
regarded as an absolute lower bound. In other words, if everything else is perfect and the satellite emerges 
from the second flyby with a perigee of 10 Re, an apogee of 57 Re and an inclination of 900 there would 
still be a minimum requirement of 33.5 m/s to obtain the desired final state. 

THE DLS OF MMS: PROCEDURE AND RESULTS 

We sketch here the procedure for obtaining the DLS of MMS. The software used for our analysis includes 
the targeting tools Swingby [11] and STK/Astrogator [12]. The force model used for the propagators 
includes the point mass of the Sun and Jupiter, the gravity field of the Earth (Degree 21, Order 21) and the 
gravity field of the Moon (Degree 2, Order 0).  The Moon is taken to be the central body in the vicinity of 
the first and second lunar swingby and the Earth is taken to be the central body everywhere else. The 
numerical integrator used is the standard RKV8(9). The positions and velocities of all planets are obtained 
via the DE405 Ephemeris file.   

Starting with an initial state, we construct phasing loops in preparation for the first flyby. A maneuver at 
apogee is performed to raise perigee. This is followed by a maneuver at perigee, which controls the 
energy at the first flyby (i.e. it controls the scattering parameter V∞). The semimajor axis of the outer loop 
is then controlled by the scattering parameters rp and γ  at the first flyby (e.g. decreasing rp increases the 

 5



outer loop semimajor axis). These two parameters are targeted so that the outer loop trajectory re-
encounters the Moon in preparation for the second flyby. 

The crucial element in the DLS of MMS is the targeting at the second lunar flyby. Here the guiding 
principle is the non-symmetrical targeting scheme discussed previously. One targets the second lunar 
flyby with a smaller rp and smaller |cos(γ)| than at the first flyby until the best final state is reached. By 
targeting in this fashion, one avoids performing a blind and tedious scan of the entire parameter space. 
For both flybys, the scattering parameters rp and γ are targeted by varying the argument of perigee ω and 
RAAN Ω of the initial state.  

Detailed Chronology of Events and Numerical Results 

We record in chronological sequence the numerical results of all pertinent events related to the DLS we 
obtained (orbit states reached, maneuvers performed, scattering parameters, etc.). Figure 2 is a realistic 
view of our DLS as it is taken directly from the STK-VO 3D-view after running our DLS in 
STK/Astrogator. It is possible to see the dramatic increase in inclination after the second flyby.    

 

first flyby
rp = 10319 km
γ  =  1360

second flyby
rp = 3590 km
γ  =  670

lunar orbit

outer loop

orbit state before
first flyby
a = 217269 km
e = 0.967
i  = 34.620

final state
a = 191353 km
e = 0.666
i = 87.80

Earth

aout = 470517 km

Fig.2  Realistic View of  DLS  

 

Events and Results 

• Initial state (Epoch: March 1, 2005  04:09:27) 

      a = 201544 km;  e = 0.962  (i.e. perigee = 1.2 Re; apogee = 62 Re) 

      i = 330   (Ecliptic plane);   i = 100 (Equatorial plane);               
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•  Maneuvers performed during the phasing loops (before the first lunar flyby)  

      A 5.5 m/s apogee burn (to raise perigee) and a 6 m/s burn at perigee to reach the  

      desired periselene at the first flyby (i.e. 11.5 m/s is used before the first flyby; both maneuvers 

      executed along the velocity direction). 

 

•  Orbital state (call it “OS1”) before the first flyby (measured at perigee)   

       a = 217269 km;  e = 0.967  (i.e. perigee = 1.12 Re, apogee = 67.0 Re )  

       i =  34.620 (ecliptic plane) ;  i =  11.30 (equatorial plane) 

 

•  Parameters at the first flyby (Epoch: March 25, 2005  22:21:43) 

        rp = 10319.44 km ;     γ = 136 deg (  |cos(γ)| = 0.72 ) ;   V∞ = 0.982 km/s 

 

 • Orbital state at apogee of outer-loop 

           a =   470517 km   ;   e =  0.864      

           i  = 5.020  (ecliptic plane)  ;  i = 27.820  (equatorial plane)             

 

•  Parameters at the second flyby (Epoch: April 27, 2005  23:45:23) 

          rp = 3590 km  ;       γ = 67 deg  ( cos( γ ) = 0.39 )  ;   V∞ = 1.13 km/s 

 

•  Orbital state(call it “OS2”) reached at the first perigee immediately following the second flyby 

           a = 215041 km;  e = 0.705  (i.e. perigee = 9.95 Re, apogee = 57.49 Re )  

           i =  86.570 (ecliptic plane) ;  i =  89.890 (equatorial plane) 

* The best orbital state one could have achieved after the second lunar flyby is a 10 x 57 Re with an 
inclination of 90 deg with respect to the ecliptic. So we are very close to the best possible achievable state 
coming out of the second lunar flyby.   

 

•  Maneuvers performed at first perigee and first apogee following second flyby 

         Delta V at first perigee following second flyby: - 34.4 m/s 

         Delta V at first apogee following second flyby : + 4 m/s 

         (both maneuvers executed along the velocity direction) 

 

Delta V used for the perigee and apogee burn after the second flyby is 38.8 m/s. This is very close to 
the absolute lower bound of 33.5 m/s (discussed previously in section on “Lower Bound”).  
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•   Final state reached (measured at second perigee following second flyby) 

         a = 191353 km  ; e = 0.667   (i.e. perigee= 9.99 Re ; apogee = 50.01 Re )   

         i  = 87.8 deg (with respect to the ecliptic plane),  i = 91.00 deg (with respect to the equatorial plane), 

        Total Delta V = 11.5 + 38.8 = 50.3 m/s 

ANALYSIS OF RESULTS  

We now analyze the results obtained in the previous sub-section. The final state of the MMS mission is 
required to have a perigee of 10.0 Re, apogee of 50.0 Re and an inclination of 900 with respect to the 
ecliptic plane. We obtained a final state with a perigee of 9.99 Re, an apogee of 50.01 Re and an 
inclination of 87.80 with respect to the ecliptic plane ( 910 with respect to the equatorial plane). The delta-
V used to transfer the initial state to the final state is 50.3 m/s. This is considerably less than the 90 m/s 
delta-V allocation. We have therefore met the baseline requirements for the DLS portion of MMS.  

The delta-V of 50.3 m/s is the sum of the delta-V before the first flyby (11.5 m/s) and the delta-V after the 
second flyby (38.8 m/s). The value of 38.8 m/s is remarkably close to the absolute lower bound of 33.5 
m/s discussed previously. We had shown in a previous section that one requires a minimum delta-V of 
33.5 m/s to achieve the desired final state after the second flyby. In other words, the best state one can 
hope to achieve after the second flyby is one that still requires a delta-V of 33.5 m/s. We required 38.8 
m/s to reach the desired final state. This implies that the state we obtained at perigee following the second 
flyby is close to being the ideal one (where the ideal one requires 33.5 m/s).  

Non-symmetrical Targeting Scheme  

The orbital state OS1 occuring before the first flyby has a semimajor axis of 217269 km, an eccentricity 
of 0.967 and an inclination of 34.620 with respect to the ecliptic plane (see sub-section “Events and 
Results”). The orbital state OS2 immediately following the second flyby has a semimajor axis of 215041 
km, an eccentricity of 0.705 and an inclination with respect to the ecliptic plane of 86.570.  The DLS is 
the only agent responsible for transferring OS1 to OS2 as there are no maneuvers between these two 
states. The DLS accomplishes by itself a 520 inclination change and lowers the eccentricity from 0.967 to 
0.705. Note that the DLS changes significantly the inclination and eccentricity while keeping the 
semimajor axis constant (i.e. the semimajor axis of  OS1 and OS2 are almost equal). These results were 
obtained by applying the non-symmetrical targeting scheme discussed in the section “Applying the 
Analytical Expression:Non-Symmetrical Targeting”. We argued in that section that rp and |cos(γ)|  should 
be significantly smaller at the second than at the first flyby. We also argued that the quantity Q ≡ 4VmV∞ 

cos(γ)/µE(1 + rp V∞
2/µm ) has the same magnitude at both flybys if the semimajor axis before and after the 

DLS (i.e. at OS1 and OS2)  is close to being equal. We now have numerical data to verify these claims.  

At the second flyby the scattering parameters are rp = 3590 km,  γ = 67 deg (cos( γ ) = 0.39 ) and V∞  = 
1.13 km/s while at the first flyby they are rp = 10319 km, γ = 136 deg (  |cos(γ)| = 0.72 ) and V∞  = 0.982.  
Clearly, rp and |cos(γ)| are significantly smaller at the second than at the first flyby in accord with our non-
symmetrical targeting scheme. Let us now compare the value of Q at the first and second flyby.  The 
equation for Q assumes that the linear speed of the Moon Vm is constant (= 1.018 km/s). Substituting rp, γ , 
and V∞ into Q we obtain Q = 2.386 x 10-6 km-1 at the first flyby and Q = 2.3266 x 10-6 km-1 at the second 
flyby.  The difference between the two values is less than 3%. Our non-symmetrical targeting scheme has 
therefore proven to be very successful. 

Numerical Verification of Analytical Expression   

The derived Eq. (1) was used to determine that a non-symmetrical targeting scheme was the most suited 
for the main goals of MMS. This scheme worked extremely well and demonstrates the usefulness of 
Eq.(1) in designing the DLS. In this section we check to see if the analytical expression also gives good 
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quantitative results. We calculate the semimajor axis after the first and second flybys using Eq.(1) and 
compare them to the numerical results quoted previously.  

To calculate a2 from Eq.(1) we need the values of the following variables: a1, rp , γ  and V∞.  For the first 
flyby these are: a1 = 217269 km ; rp = 10321 km; γ = 1360 ; V∞ = 0.982 km/s.  Substituting these values 
into Eq.(1) yields a2 = 450150 km.  This is to be compared to the value of the semimajor axis of the outer 
loop after the first flyby i.e. 470517 km. The difference between the analytical and numerical result is 4.3 
%. For the second flyby one has: a1 = 470517 km ; rp = 3590 km; γ = 670 ; V∞ = 1.13 km/s.  Substituting 
these values into Eq.(1) yields a2 = 224400 km.  This is to be compared to the semimajor axis at perigee 
immediately following the second flyby i.e. 215041 km. The difference between the analytical and 
numerical result is 4.2 %. 

There is therefore very good quantitative agreement between the analytical and numerical results despite 
the fact that the analytical expression does not take into account solar and lunar perturbations. 
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