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ABSTRACT - In several formation-flying control applications the inter-spacecraft 
separations can range from a few meters to several kilometers.  It is mission critical to 
avoid collisions between spacecraft as they move in space.  We present a solution to the 
optimal formation path-planning problem where the formation reconfigurations are 
required subject to collision avoidance and resource limitation constraints.  The problem 
is formulated as a parameter optimization problem where spacecraft paths are 
parameterized as splines.  An iterative algorithm to solve the problem on-board is 
proposed.  The solution to the problem results in realizable trajectories which avoid 
collisions between constituent spacecraft 
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1. INTRODUCTION 

Several future space science missions, e.g. the Terrestrial Planet Finder (TPF), the Terrestrial Planet Imager (TPI), 
Starlight missions, involve coordinated flying of multiple spacecraft platforms. The purpose of formation flying 
interferometry is to form a variable-baseline space interferometer whose baseline may be varied from a few 
meters to several kilometers.  It is mission critical to avoid collisions between spacecraft as they move in space, 
especially when they are required to be in close proximity of one another.  Mission profiles require several 
formation reconfigurations over the life of the mission.  By a formation reconfiguration we mean a change in 
relative spacecraft position vectors.  The problem being addressed here is that of autonomous formation 
reconfiguration planning subject to some optimality criteria and collision avoidance constraints. 

The problem of collision avoidance between collaborative systems has been the subject of extensive research in 
the field of robotics.  Several published works [1-5] have addressed the problem of robot path planning in 
workspace environments.  Almost all of these have proposed solutions that make use of artificial potential 
functions.  Application of potential-function based methods is a very effective and powerful technique for 
handling collision avoidance constraints, which has also been generalized to spacecraft applications [7, 8].  Shan 
and Koren [6] take an obstacle accommodation approach to the problem.  Rather than avoid physical contacts 
between moving objects, their approach controls relative velocities to avoid damage from contact.  Some of the 
formation flying specific research [8-11] considers formation reconfiguration problem but not in the context it is 
proposed in here.  Specifically, the collision avoidance constraints during formation reconfigurations have been 
ignored in literature published thus far.  While these methods are analytically rigorous and are also attractive from 
an implementation point of view, the collision avoidance for formation flying interferometry applications will 
need to satisfy additional and more stringent requirements beyond the scope of the work published so far.  For 
example, the collision avoidance constraints must be satisfied exactly at all times, the convergence to the desired 
end-point must not be too slow, which is the case with potential-function based methodologies, and the 
accelerations required to follow the desired paths must be within the capabilities of the actuation hardware. 
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2. PROBLEM FORMULATION 

The optimal collision-avoidance problem is formulated as a parameter optimization problem.  The translation 
paths taken by each spacecraft are parameterized as polynomial functions of time.  The parameterization is 
constrained such that the feasible paths satisfy the appropriate boundary conditions.  Subsequently we propose an 
iterative algorithm to solve the resulting parameter optimization problem whose size is proportional to the number 
of spacecraft in the formation.  We show that the solution approach can be made to terminate in a fixed, user-
specified number of iterations for the relatively simple case of a two spacecraft formation (e.g. Starlight).  The 
maneuver duration is treated as another optimization parameter.  It is computed such that the control required to 
follow the ‘optimal’ path does not exceed the linear acceleration capability of any spacecraft in the formation.  
The optimal path-planning problem does not require a solution in real-time.  The proposed algorithm can be 
programmed to execute a little ahead of time, in anticipation of the impending reconfiguration maneuver.  

A spacecraft in the formation is assigned the role of the reference spacecraft.  This is the spacecraft where 
formation reconfiguration path planning will actually take place in a real system.  Any spacecraft in the formation 
may serve this role.  The positions of all other spacecraft in the formation will be defined with respect to the 
reference spacecraft.  There are a total of N spacecraft in the entire formation and the reference spacecraft will be 
referred to as the spacecraft N.  For the purpose of prescribing collision avoidance constraints, we shall define an 
exclusion sphere of radius Rk about the spacecraft k.  Enforcement of the collision avoidance constraint would 
require that any two exclusion spheres do not intersect (a point of contact is allowed, however).  Let xk denote the 
linear position vector of spacecraft k with respect to the reference spacecraft in inertial coordinates (Fig. 1), k = 1, 
2, ..., N-1; vk be the time derivative of xk, k = 1, 2, .., N-1; and ak denote the absolute linear acceleration of 
spacecraft k,  k = 1, 2, .., N.  By absolute acceleration we mean the acceleration with respect to some inertial 
frame.  Note that ak is not the time derivative of vk, rather it is the sum of the time derivative of vk and aN, the 
absolute linear acceleration of the reference spacecraft. 

 
Fig. 1. Formation of N Spacecraft 

Furthermore let T denote the reconfiguration maneuver time, a ‘⊗’ the vector cross product operator, and a ‘•’ the 
vector scalar product operator.  The following assumptions are made: 

i) The formation reconfiguration maneuvers are of the rest-to-rest variety, i.e. vk(t) = 0, t = 0, T,  k = 1, 2, .., N-1.  
Almost all formation reconfigurations belong to this class.  The one exception is synchronized formation 
rotation.  Avoiding collisions is not a concern in this case since the specific maneuver places additional 
constraints on the motion, which preclude collisions. 
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ii) The natural orbital perturbations on system relative equations of motion are small enough to be ignored.  This 
is a realistic assumption for the deep-space formation flying applications.  Orbital dynamics induced relative 
motion accelerations are several orders of magnitude below the path accelerations during formation 
reconfigurations. 

iii) Spacecraft rotational degrees of freedom are ignored.  This is not restrictive from a practical application 
standpoint.  It simply requires that either a prescribed fraction of the total acceleration capability be used for 
collision avoidance path-planning (the balance reserved for attitude planning) or that a momentum exchange 
device be used for attitude control. 

2.1. The Problem Statement 

The formation equations of motion may be stated as: 

   
,

k k

k k N
0 T

k k k k

k k

x = v , k = 1, 2, .., N-1, (1)
v = a - a k  = 1, 2, .., N-1, (2)

x (0) = x , x (T) = x , k = 1, 2, .., N-1, (3)
v (0) = v (T) = 0, k = 1, 2, .., N-1. (4)
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Note that the maneuver duration T is not specified.  The problem is to find suitable accelerations 
, k = 1, 2, .., N, such that the sum of total energy, i.e. ka (t), t  [0, T]∈
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is minimized while satisfying appropriate collision avoidance and control authority constraints, i.e. 
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z,     k = 1, 2, .., N; t  [0, T]. (8)∈

∈

The last constraint (eqn.(8)) may take other forms, e.g. a constraint may be imposed on the 2-norm of the 
acceleration vectors.  Although the solution approach can handle a general acceleration bound, we shall, for the 
sake of problem definition, assume a ‘box’ type bound noted in (8).  

Defining a dimensionless time variable  and using (.  t/Tξ � )′  to denote a differentiation with respect to ξ , 
allows us to express (1-5) as follows: 

   
,
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k k k k
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x = T v , k = 1, 2, .., N-1, (9)
v = T ( a - a  ) k  = 1, 2, .., N-1, (10)

x (0) = x , x (1) = x , k = 1, 2, .., N-1, (11)
v (0) = v (1) = 0, k = 1, 2, .., N-1, (12)

′

′
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2

1
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By treating the maneuver duration T as another parameter it becomes possible to enforce (8) aposteriori.  This 
results in a significant simplification.  We shall initially ignore (8) in computing appropriate collision-avoidance 
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paths x( ), [0, 1],ξ ξ ∈  and, later, choose an appropriate T to enforce (8).  In order to do so we shall exploit the 
following relationship, which follows from (9), (10): 

   a   2
k N k( ) = a ( ) + x ( ) / T . (14)ξ ξ ξ′′

Optimal accelerations minimize the Hamiltonian: 
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where kp ( )ξ , kq ( )ξ  are co-states associated with kx ( )ξ  and kv ( )ξ , respectively, and λ ’s are the Lagrange 
multipliers associated with the collision avoidance constraints.  Minimization of the Hamiltonian leads to: 

    

N - 1
N k
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k k

a ( ) =  q ( ), (16)

a ( ) = q ( ),  k = 1, 2, .., N-1 (17)
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Derivation of Euler-Lagrange equations is straightforward; we obtain for : k = 1, 2, .., N-1
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Equations (9-12), (6-7), and (16-21) form the necessary and sufficient conditions for optimality for the sub-
problem where there are no control authority limitations.  Elimination of the q (k )ξ  between (16) and (17) yields: 

   ∑  
N

k
k = 1

 a ( )  = 0,    [0, 1], (22)ξ ξ ∈

which implies that, for an optimal maneuver, the net formation acceleration must be zero at all times.  Using (14) 
and (22), optimal acceleration required at each spacecraft can be expressed as the following summations: 
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2.2. Solution Approach 

Without loss of generality, we may express the evolution of kx ( )ξ  as: 

   0 T 0 T
k k0 k k1 k k3 k kx ( )  = b ( ) x    +  b ( ) x  +  b ( ) { x   x  } ,    [0, 1],  k = 1, 2, .., N-1, (25)ξ ξ ξ ξ ξ⊗ ∈

where kib ( )ξ , i = 0, 1, 2, are continuously differentiable scalar functions of ξ .  In instances where the cross 
product direction is not defined, it is still possible to prescribe a similar evolution of relative positions using other 
basis vectors.  Satisfaction of system boundary conditions (11, 12) imposes the following constraints on the 
boundary values of the functions kib ( ), i = 0, 1, 2; k = 1, 2, .., N-1;   [0, 1] ξ ξ ∈ : 

   b
k0 k0 k0 k0

k1 k1 k1 k1

k2 k2 k2 k2

b (0) = 1, b (1) = 0, b (0) = 0, b (1) = 0, (26)
(0) = 1, b (1) = 1, b (0) = 0, b (1) = 0, (27)

b (0) = 1, b (1) = 0, b (0) = 0, b (1) = 0. (28)

′ ′

′ ′
′ ′

 

Representative graphs of these functions (subsequently referred to as the Path Functions) are shown in Fig. 2. 

 
Fig. 2. Representative Graphs of Path Functions 

Representation (25-28) defines a feasible path, i.e. a path which satisfies only the boundary conditions.  It does 
not restrict the optimal paths in any way, and is therefore equivalent to the most general representation possible.  
It is trivial to place additional constraints on optimal paths, e.g. it may be desirable to further restrict optimal paths 
such that they lie in the plane spanned by the two end points.  This is accomplished by setting k2b ( )ξ ≡ 0.   

The optimization problem can now be re-stated as the problem of determining the optimal set 
Several parameterization of b are possible.  We 

make the following choice: 
k k0 k1 k2b   {b ( ), b ( ), b ( )}, k = 1, 2, .., N-1;  [0, 1]. ξ ξ ξ ξ ∈� k

    
n j

ki kij
j = 0

b ( ) =  c  ,    [0, 1], (29)ξ ξ ξ ∈∑

where are some undetermined coefficients.   This specific choice 
is based primarily on the observation that the optimal solution of the constraint-free optimal path-planning 
problem belongs to the class of solutions (29) where Enforcement of 
boundary conditions (11, 12) results in the following expressions for the elements of set : 

kijc , i = 0, 1, 2;  j = 0, 1, .., n;  k = 1, 2, .., N-1, 

kijc , i = 0, 1, 2;  k = 1, 2, .., N-1;  j  4. ≥
kb

   
n2 3 2 3 j

k0 k0j
j = 4

b ( ) = 1 - 3 + 2  +  [{(j-3) - (j-2) + } c ] ,  k = 1, 2, .., N-1;   [0, 1], (30)ξ ξ ξ ξ ξ ξ ξ ∈∑
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n2 3 2 3 j

k1 k1j
j = 4

b ( ) = 3  - 2  +  [{(j-3) - (j-2) + } c ] ,  k = 1, 2, .., N-1;     [0, 1], (31)ξ ξ ξ ξ ξ ξ ξ ∈∑

   
n 2 3 j

k2 k2j
j = 4

b ( ) =  [{(j-3) - (j-2) + } c ] ,  k = 1, 2, .., N-1;     [0, 1], (32)ξ ξ ξ ξ ξ ∈∑

In general for an nth order expansion (29), there will exist 3(N-1)(n-3) undetermined coefficients.  The number of 
collision-avoidance constraints to be satisfied are N(N-1)/2.  An over-parameterized system would require that n, 
the order of expansion in (29), be greater than 3+N/6.  For example, a 6th order expansion for Path Functions 
leads to an over-parameterized system when N < 18, i.e. formations of at most 17 spacecraft.  The solution 
methodology proposed here is not a function of n.  However, the number of computations required to reach a 
solution is dependent on n. 

As noted earlier, it can be shown that the solution to the (trivial) problem of obtaining minimum energy 
trajectories where collision avoidance consideration is absent, is given by (30-32) where  c    

The optimal path in this case is a cubic function of time: 
kij , i = 0, 1, 2; j  4.≥

  2 3 0 2 3 T
k k kx ( ) = (1 - 3  + 2 ) x  + (3  - 2 ) x  ,  k = 1, 2, .., N-1;     [0, 1], (33)ξ ξ ξ ξ ξ ξ ∈

The optimal solution to the constraint-free optimal path-planning problem belongs to the class of solutions being 
considered here.  It is also obvious that consideration of the collision avoidance constraints would require 
inclusion of at least one more term in the power series (29). 

2.3. Numerical Algorithm 

Let c denote the set of undetermined coefficients: 

   kc = { c  },  k = 1, 2, .., N-1, (34)

where  The optimal collision avoidance path-
planning problem has been reduced to the problem of determination of an appropriate c which minimizes J/T 
(where J is given by (13)) while satisfying (6) and (7).  Rather than minimizing J, we minimize J/T so that the 
dependency of the initial solution on maneuver duration is completely removed.  A suitable value for T will be 
chosen later on so that (8) is also satisfied.  The resulting problem is a non-convex optimization problem (convex 
cost, non-convex constraints).  The solution approach proposed here is numerical.  Although it is difficult, if not 
impossible, to make any claims about the convergence and nature of solutions to such problems, the proposed 
approach is based on arguments induced by geometry and has not been found to fail yet in our applications.  
Define the minimum separation between the two spacecraft as follows: 

k k04 k14 k24 k05 k15 k25 k0n k1n k2nc  = { c ,c ,c , c ,c ,c , .., c ,c ,c }.

  
kj k j 2

  [0, 1]

kN k 2
  [0, 1]

d = Minimum  { || x ( ) - x ( ) ||  },  (k, j) = 1, 2, .., N-1; j  k, (35)

d = Minimum  { || x ( ) ||  },  k = 1, 2, .., N-1, (36)
ξ

ξ

ξ ξ

ξ
∈

∈

≠

 

and the gradients of the cost J and minimum separations with respect to c: kjd

  1 JJ =  , (37)
T c

∂
∇

∂
 

  kj
kj

d
d = , k = 1, 2, .., N-1; j = 1, 2, .., N; j  k. (38)

c
∂

∇ ≠
∂
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Details of the numerical algorithm are presented next.  We initialize c = {0} and proceed as follows: 

Step 1: Compute minimum separations kjd  

Evaluate minimum spacecraft-spacecraft separation for all pairs.  Exit if all  are larger than the minimum 
required, i.e. exit if: 

kjd kjd

   2 2
kj k jd ( R  + R ) ,  (k,j) = 1, 2, .., N-1; j = 1, 2, .., N; j  k, (39)≥ ≠

else proceed to Step 2. 

Step 2: Evaluate gradients 

Numerically evaluate gradients , kjJ  d∇ ∇ at c.  J and kx  can be expressed in closed forms (functions of c).  
Evaluation of gradients requires discrete approximations. 

Step 3: Determine update direction σ  for c 

Using geometry-based arguments, a most obvious direction is the one which most nearly lies in the plane 
orthogonal to J∇ and also yields the maximum possible change in separations.  Since there may be several inter-
spacecraft separations requiring an improvement, a weighted linear combination of the gradients of all offending 

’s is formed.  The weights used are simply ( Rkjd k j + R ) dkj− , in other words, the extent of violation.  Other 
weights might also be used here.  The resulting gradient is therefore: 

   ∇ =  k j kj kjd { ( R  + R ) - d  } d , (40)∇∑
where only the offending ’s figure in the sum.  The appropriate direction σ is required to satisfy the 
following conditions: 

kjd∇

   
0
0

J  , (41)
d  . (42)

σ
σ

∇ ≤�

�∇ >
 

A solution to (41, 42) can be expressed as: 

   ( J  d) d -  J. (43)
( J  J)
∇ ∇

= ∇ ∇
∇ ∇

�

�
σ  

In instances where J∇ and ∇  are nearly collinear, we choose a direction which perturbs c along d J∇ .  

Step 4: Update c and return to Step 1  

Update c along σ : 

   ˆ
ˆ

d   , (
  d
δ σ

σ
+  =  +  ∇ �

c  c  44)

where σ̂  is the unit vector along σ, and dδ , the required improvement along d∇ , is a user-specified parameter.  
The update equation (44) is motivated by the two spacecraft case, where there is only one collision-avoidance 
constraint.  Let  be the minimum inter-spacecraft separation in this case.  Therefore, if c is perturbed by ρ 2d σ̂ , 
where ρ is some scalar and we would like to effect a change dδ in , then the change in d can be expressed 
as:   ρ 

2d 2
σ̂ • ∇  ≈ d dδ , which leads to:  ρ = dδ / ( ˆ  dσ ∇� ), the multiplier of σ̂ in the second term on the right-

hand-side in (44).  As the last step we replace c by c+ and return to Step 1. 
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Once a solution has been obtained, we turn our attention to the satisfaction of (8), the constraints on individual 
spacecraft acceleration components.  Numerical solution to the problem also yields the following evaluations: 

  

N - 1
ki ki ji

  [0, 1] j = 1

N - 1
Ni ki

  [0, 1] k = 1

N - 1 1= Maximum   x ( ) -  x ( ) , i = x, y, z; k = 1, 2, .., N-1,
N N

1= Maximum  -  x ( ) ,  i = x, y, z .
N

j  k
ξ

ξ

α ξ ξ

α ξ

∈

∈


′′ ′′ 

  


′′ 

  

≠

∑

∑

 

Equations (23, 24) and the ,ki  i = 1, 2, .., Nα evaluations noted above allow us to obtain an appropriate maneuver 
duration T.  It is trivial to show that none of the acceleration components exceed the prescribed limits when we 
use the following evaluation for time T. 

  ki
 (i = x, y, z)  k
(k = 1,2,..,N)

T Maximum
A i

α 
= 

  
 .

Once the undetermined coefficient set c has been obtained, the ‘optimal’ solution is trivial to implement.  It 
requires substituting the numerically derived coefficient set c in (29) to obtain the desired Path Functions b .  
Path Functions are then substituted in (25) to obtain the relative positions as explicit functions of time, which can 
be analytically differentiated once to obtain the required relative velocities and twice to obtain relative 
accelerations. 

k

3. NUMERICAL EXAMPLE 

Consider the case of a formation with 5 spacecraft.  There are 10 collision avoidance constraints in this case.  We 
shall assume the same avoidance radius for all spacecraft: kR = 10 m, k = 1, 2, .., 5.  This would require that all 
spacecraft-spacecraft separations be greater than 20 m.  The boundary conditions to be satisfied in this instance 
are: 

  

1

2

3

4

x (0) = { 22.254, -36.706, 17.052 } m,
x (0) = { 22.254, -14.518, 2.261 } m,
x (0) = { 22.254, 7.670, -12.532 } m,
x (0) = { 22.254, 29.858, -27.324 } m,

 

  

1

2

3

4

x (T) = { -38.545, -13.285, -21.705 } m,
x (T) = { -25.697, 3.953, -5.930 } m,
x (T) = { -12.848, 21.192, 9.845 } m,
x (T) = { 0.000, 38.431, 25.621 } m,

 

and the appropriate acceleration limits to be observed in this case are: 

   
.

2
k

2
5

A = { 0.005, 0.004, 0.003 } m/s ,  k = 1, 2, 3, 4,

A = { 0.004, 0.003, 0.005 } m/s

All initial position vectors lie in a plane, as do all terminal positions.  The plane of initial positions is different 
from the plane spanned by the terminal positions. 
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Using a 4th order expansion (i.e. n = 4) for paths, we obtain the following solutions for the undetermined 
coefficients: 

   

104 114 124

204 214 224

304 314 324

404 414 424

{c ,c ,c } = { 3.7976,   4.0480, 0.6680 },
{c ,c ,c } = { 19.448, 19.394, 2.6337 },
{c ,c ,c } = { 3.0534, 2.0985, -2.3686 },
{c ,c ,c } = { 1.3019, 0.6078, -0.4503 }.

Since the final formation plane is different from the initial plane, out of plane motions are required (the 3rd 
coefficient in each set above is non-zero).  This will not be the case if the final formation lied in the plane defined 
by the initial formation.  The maneuver required 316 seconds to complete in this case.  Maneuver duration is 
dictated by the z component of , the acceleration of the 4th spacecraft (see Fig. 7, where note that 

 m/s2, the prescribed limit).  In all time histories depicted in Fig. 3-8, unconstrained time histories 
appear as dashed lines.  By unconstrained time histories we mean optimal solutions for the case when there are no 
collision avoidance constraints (eqn. (33)), i.e. 

4a
4za (0) = 0.003

kR = 0, k = 1, 2, .., 5.  The constrained histories, related to the 
problem addressed here, appear as solid lines.  The spacecraft-to-spacecraft separations and cost functional are 
plotted vs. non-dimensional time ξ  in Fig. 3.  There are 10 inter-spacecraft separations and four of them come 
close to the required 20 m threshold.  Note that two of the unconstrained separations clearly violate the 20 m 
lower limit in the plot on the left in Fig. 3.  Satisfaction of all constraints requires 80% more energy.  

C

U

Fig. 3.  Variations in inter-spacecraft separat

  
onstrained
 

nconstrained

ions and maneuver cost 
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Time histories of 1x  and  are depicted in Fig. 4, 1a 2x  and  are shown in Fig. 5, 2a 3x and are shown in Fig. 6, 3a
4x  and  are shown in Fig. 7, and , the acceleration required by the reference spacecraft, is shown in Fig. 8. 4a 5a

 
   Fig. 4.  Variations in x1 and a1   Fig. 5.  Variations in x2 and a2 

 
 Fig. 6.  Variations in x3 and a3 Fig. 7.  Variations in x4 and a4 

 
Fig. 8.  Variations in a5 
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4. CONCLUSIONS 

The problem of minimum energy collision avoidance for formation flying applications is considered and a 
solution in presented. Minimum energy expenditure is closely related to the total fuel expended.  The proposed 
methodology looks for sub-optimal solutions which are attractive from the standpoint of real-time 
implementations.  The solution is sub-optimal since it tries to locally minimize the appropriate cost-functional 
within the class of paths under consideration. 

Our analysis has shown that, within the class of proposed solutions, consideration of only the first significant term 
in the time-series approximation yields a solution with the lowest cost.  It is also computationally least intensive.  
It is possible to include additional constraints on relative velocities.  Such inequalities can be handled in the 
manner the acceleration constraint is accommodated here.  Also, other metrics can be considered within the same 
class of solutions.  Additional work is also needed in the area of avoidance-assured path-planning which 
guarantees collision-free motions in case of a fault at any time during a maneuver.  This places additional 
constraints on the relative positions and velocities which must be accounted for in the numerical algorithm.   
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