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ABSTRACT–The variational problem of determining low-thrust planar plan-
etary capture trajectories in a central Newtonian field is considered. Analytical
solutions previously obtained for variable specific impulse and constant power
propulsion systems are presented in a form convenient for application to the
planetary capture problem. The solutions describe a family of low-thrust spiral-
ing trajectories terminating on a given elliptical parking orbit. By analyzing the
optimality conditions at the junction between the low-thrust capture spiral and
the elliptic parking orbit, it is shown that extremal low-thrust trajectories can be
described completely analytically if the initial range of the spacecraft, perigee and
apogee of the parking orbit, maximum level of power, efficiency of the propulsion
system and final mass are specified. A numerical example confirms the results.

KEYWORDS–Variational problem, low-thrust, optimal trajectories, plane-
tary capture, analytical solutions.

INTRODUCTION
In this paper we consider the variational problem of optimal planetary capture trajectories
of a spacecraft with low-thrust propulsion. It is known that a space trajectory with con-
straints on exhaust velocity and mass-flow rate may contain zero thrust (ZT), intermediate
thrust (IT), and maximum thrust (MT) arcs [1]. Previous studies of such motion have often
considered chemical propulsion systems, which generally are high-thrust, low specific im-
pulse devices. It is also known that in the case of constraints on power and exhaust velocity
one can obtain a trajectory containing either zero power (ZP) or maximum power (MP)
arcs with variable or constant thrust [2]. Power and exhaust velocity constraints are gen-
erally associated with low-thrust, high specific impulse propulsion (i.e., power-limited solar
electric, electromagnetic plasma, or ion propulsion systems). Consideration of power and
exhaust velocity constraints together in one problem statement allows for the generalization
of the variational problem to include the characteristics of both high-thrust and low-thrust
propulsion systems. The analysis of the constraints on direction of thrust, power, and spe-
cific impulse in the variational statement leads to classes of trajectories that may contain
combinations of ZP, intermediate power (IP), and MP arcs with constant and variable spe-
cific impulse depending on values of certain control variables and Lagrange multipliers [3].
It is important to note that the system of equations of such a generalized problem can be
written in a canonical form which allows the application of many of the methods of ana-
lytical mechanics developed for Hamilton dynamic systems. Therefore, the solutions of the
canonical equations obtained for ZT, IT and MT arcs in the case of chemical propulsion
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systems can also be considered for the low-thrust propulsion systems. This implies the
utilization of known relationship between power, mass-flow rate, and exhaust velocity [3].

Investigations of optimal space trajectories with power and exhaust velocity constraints
using methods of numerical optimization and nonlinear programming have been reported
in the literature (see for example [4]–[5]). Fuel-optimal trajectories for spacecraft using low-
thrust variable specific impulse have been given more attention in connection with studies
on power-limited round-trip human mission to Mars [6]–[8]. The focus of this paper, how-
ever, is not on the application of numerical methods to the solution of the optimal space
trajectory problem, but rather on the search for optimal solutions that can be described
entirely analytically. The authors have shown that the extremal trajectory with variable
specific impulse and constant power can be described entirely analytically (see [3] and [9]).
In the present paper it will be shown that the variable specific impulse and constant power
analytic solution can be applied to the problem of planetary capture to an elliptical parking
orbit.

PROBLEM STATEMENT
The motion of a spacecraft is considered to be a point mass moving in the central Newtonian
field. The dynamics are described by the vector differential equation [3]:

ẋ = f(x,u) (1)

where the state vector x and dynamics f are given by

x =


 r

v
m


 and f(x,u) =




v
− µ

r3 r + 2P
Ispgm l

− 2P
I2
spg2


 ,

and where r is the spacecraft position (km), v is the velocity (km/s), m is the mass of
the spacecraft (kg), l(l1, l2, l3) is the unit thrust vector, g is the sea-level gravitational
acceleration (m/s2), Isp is the specific impulse (s), µ is the gravitational parameter of the
central body (km3/s2), P is the exhaust power (kw), and the piecewise continuous control
vector is denoted by u = (lT , P, Isp). The goal is to transfer the spacecraft from the initial
state at t0

r(t0) = r0, v(t0) = v0, m(t0) = m0, (2)

to the final state at t1
r(t1) = r1, v(t1) = v1, (3)

while minimizing the performance index

J =
1
2

∫ t1

t0
a2(t) dt , (4)

subject to constraints

h1 := l21 + l22 + l23 − 1 = 0
h2 := P (Pmax − P ) − γ2 = 0 (5)

h3 := (Ispmax − Isp)(Isp − Ispmin)− η2 = 0

where a is the thrust acceleration given by

a =
2P

Ispgm
.
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The variables η and γ are treated as auxiliary components of the control vector, therefore,

u is augmented to include η and γ, so that now u =
[
lT P Isp η γ

]T
. The stationarity

conditions (or Euler-Lagrange equations) may be expressed as [1]

λ̇ +
[
∂f
∂x

]T

λ −
[
∂h
∂x

]T

ν = 0 (6)

−
[
∂f
∂u

]T

λ +
[
∂h
∂u

]T

ν = 0

where ν(ν1, ν2, ν3) are the Lagrange multipliers, λ =
[
λT

r ,λ
T
v , λ7

]T
, λr(λ4, λ5, λ6) is the

Lagrange multiplier conjugated to spacecraft position, λv(λ1, λ2, λ3) is the primer vector
conjugated to the velocity, λ7 is a multiplier conjugated to the mass, and the components
of h = [h1, h2, h3]

T are given in Eq. (5).
Analysis of the corresponding stationary conditions yields [3]:

λ̇r =
µ

r3
λv − 3

µ

r5
(λT

v r)r

λ̇v = −λr (7)

λ̇7 =
2P
cm2

λT
v l

where c = gIsp (km/s) is the exhaust velocity, and

− 2
cm

λT
v l +

2
c2

λ7 + ν2(Pmax − 2P ) = 0

2P
c2m

λT
v l − 4P

c3
λ7 +

ν3

g
(Ispmax − 2Isp + Ispmin) = 0

−2P
cm

λv + 2ν1l = 0 (8)

−2γν2 = 0
−2ην3 = 0.

Note that the third equation of Eq. (8) implies that the vector λv is parallel to the direction
of thrust l, that is

l =
λv

λv
.

From the Weierstrass condition, it follows that

P

c
(
λT

v l
m

− λ7

c
) ≥ P̃

c̃
(
λT

v l̃
m

− λ7

c̃
) (9)

where P̃ , c̃, and l̃ are admissible values. Suppose that c̃ = c and l̃ = l, that is, let c̃ and l̃
assume their optimal values. Then, the switching function, denoted by χ, and given by

χ =
λv

m
− λ7

c

is a continuous function, and from Eq. (9) it follows that

χ

c
(P − P̃ ) ≥ 0 . (10)

3



Then, taking into account the continuity of λT ẋ, it follows that P = Pmax when χ > 0,
P = 0 when χ < 0, and 0 < P < Pmax when χ = 0. Using Eq. (8), it follows that several
classes of extremals may exist, such as:

• Null thrust arcs with P = 0 when γ = 0, ν2 �= 0 and χ < 0

• Maximum power arcs with P = Pmax when γ = 0, ν2 �= 0 and χ > 0

• Variable power arcs with 0 < P < Pmax when γ �= 0, ν2 = 0 and χ = 0

and

• Constant Isp with Isp = Ispmax or Isp = Ispmin when η = 0 and ν3 �= 0

• Variable Isp that satisfies Ispmin < Isp < Ispmax when η �= 0 and ν3 = 0

All possible combinations of values of P and Isp have been mentioned in works [3], [9].
Note that the case of variable P and variable Isp is not possible under the problem

statement considered here. Indeed, in this case, we have γ �= 0, ν2 = 0, η �= 0 and ν3 = 0.
From the first and second equations in Eq. (8), it follows that

λv

m
− λ7

c
= 0

and
λv

m
− 2

λ7

c
= 0.

This leads to λ7 = 0 which implies that λv = 0. This is a contradiction to the statement of
the variational problem and to the theory of primer vectors. Consequently, the combination
of variable P and variable Isp is not further considered as the case of an extremal motion.

In this paper, the class of trajectories corresponding to the case where γ = 0, η �= 0,
ν2 �= 0 and ν3 = 0 that describes extremal motion with maximum level of power and vari-
able specific impulse will be presented. This corresponds to λv =

√
λ2

1 + λ2
2=constant. The

main equations of the problem being considered and integral expressions are given in the
next section. For more details and derivations the reader is referred to the previous work
of authors [3].

EQUATIONS OF THE PROBLEM AND INTEGRAL EXPRESSIONS
The equations of motion Eq. (1) and the stationarity conditions Eq. (8) may be rewritten
in the canonical form [3]:

ẋ =
[
∂H

∂λ

]T

and λ̇ = −
[
∂H

∂x

]T

(11)

with the Hamiltonian

H = fT λ = − µ

r3
λT

v r + λT
r v +

Pmax

2b
λ2

v

where vectors are given in the planar coordinate system with the origin at the center of
attraction [9]:

r(r, 0), v(v1, v2), λv(λ1, λ2), λr(λ4; λ1
v2

r
− λ2

v1

r
+

λ5

r
)
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It can be shown that the system Eqs. (11) has the following first integrals

− µ

r3
λT

v r + λT
r v +

Pmax

2b
λ2

v = C

Ispgmλv = 2b (12)

λT
v v − 2rT λr −

(
5Pmax

2b
λ2

v − 3C
)
t = C1

λ5 = C2,

and the invariant relations

λ1λ4 + λ1λ2
v2

r
− λ2

2

v1

r
+

λ2λ5

r
= 0

λ2
4 + (λ1

v2

r
− λ2

v1

r
+

λ5

r
)2 =

µ

r3
λ2

v − 3λ2
1

µ

r3
(13)

(λ2 − 5λ2
1)v1 + 2v1(λ1v1 + λ2v2) − 4λ1λ4r = 0 .

SOLUTIONS FOR LOW-THRUST ARCS
If the final polar angle is not specified and the functional of the problem does not explicitly
depend on final polar angle, from the transversality condition we obtain

λ5(t1) = − ∂J

∂θ(t1)
,

hence, it follows that λ5(t1) = C2 = 0. The analytical solutions for this case have been
obtained utilizing Eqs. (12)-(13) in terms of the thrust angle and were previously reported
in [3] and [9]. In a form that is convenient for application to the planetary capture problem,
the analytic solution is given by:

r2 =
µ2

a4
s

3
2

v1 = aF1(s)
v2 = aF2(s)

θ =
1
4
(

3
tanϕ0

+ ϕ0) − 1
4
(

3
tanϕ

+ ϕ) + θ0

1
m

=
1
m0

+
Pmaxλ

2
v

2b2
t

Isp =
2b

gλvm
(14)

m0

mf
=

Isp,f

Isp,0

t =
1
tc

[
3zk(1 − 5s)

3− 5s
− C1

λv

]
λ1 =

√
sλv

λ2 = kλv

λ4 = −k

r

√
µ

r
(1 − 3s)λv

λ5 = 0

λ7 =
b

m2
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where
s = sin2 ϕ, k = cosϕ

F1(s) =
6s

1
2k

3 − 5s

√
1− 3s

s
3
4

F2(s) =
3 − s

3 − 5s

√
1− 3s

s
3
4

z =
√

µ

r
(1 − 3s).

The integration constants are computed as follows:

a = (
µα

3
)

1
4

α =
Pmax

2
λv

b
− C

λv

C1

λv
=

3k0z0(1 − 5s0)
3− 5z0

(15)

tc =
5
2
Pmaxλv

b
+ 3α

where s0 = sin2 ϕ0, k0 = cosϕ0, and z0 =
√
µ(1 − 3s0)/r. The dependency of the flight-path

angle ψ on the thrust angle ϕ can be found from the analytic solution above to be

tanψ =
3 sin 2ϕ

3 − sin2 ϕ
, (16)

and it can be shown that, in the case of small thrust angles, we have have the approximate
expression

tanψ ≈ 2ϕ.

Note that the behavior of the flight-path angle in the case of small thrust angle is similar
to the corresponding expression for Lawden’s spirals which represent IT arcs with constant
specific impulse [1]. The analytical solutions presented above will be applied to analyze the
capture maneuver in the next section.

EXAMPLE OF CAPTURE MANEUVER USING LOW-THRUST SOLUTIONS
In this section, we analyze the minimum-fuel capture maneuver for a spacecraft approaching
the Earth utilizing the low-thrust analytic solutions obtained in the previous section. It is
assumed that, the spacecraft being initially in the heliocentric field, operates its engine to
initiate a capture maneuver into the geocentric field. In order to determine the initial condi-
tions, we assume that the spacecraft enters the Earth’s gravitational field when magnitude of
its radius vector becomes equal or less then radius of sphere of influence (r0 = 9.2482× 105

km). As final conditions, the low-thrust maneuver ends with transferring the spacecraft
from the low-thrust arc to the given elliptical parking orbit. The time of the transfer is not
fixed. We assume that the perigee and apogee (or semi-major axis and eccentricity) of the
elliptical parking orbit and final mass of the spacecraft are given. This means, in particular,
that the initial true anomaly of the spacecraft on the parking orbit and the orientation of
the parking orbit are to be determined. The low-thrust trajectory is to be connected with
the elliptical parking orbit in such a manner that all continuity conditions at the junction

6



must be satisfied. It will be shown below that one low-thrust trajectory can be used to
implement the maneuver. The first junction is considered as a starting point of the low-
thrust motion and the second junction serves to connect the low-thrust trajectory with the
parking orbit. The initial and final values of variables will be denoted by subscripts “1”
and “2,” respectively. Forming the continuity conditions at the first and second junctions
using Eqn. (14) yields

r1 =
µ

a2
s

3
4
1

v11 = aF1(s1) (17)
v21 = aF2(s1)

and
µ

a2
s

3
4
2 =

p

1 + e cos f2
= r2

aF1(s2) =
√

µ

p
e sin f2 = v21 (18)

aF2(s2) =
√

µ

p
(1 + e cos f2) = v22

where
s1 = sin2 ϕ1, s2 = sin2 ϕ2.

The functions F1 and F2 are given in the previous section. Below we show that the unknowns
r1, v11, v21, s2, α, and f2 are defined as functions of the initial thrust angle, ϕ1, semi-latus
rectum, p, and eccentricity, e (or in the same manner, perigee and apogee) of the parking
orbit. Indeed, from Eqs. (17)–(18), the unknowns α and s2 may be obtained as functions
of f2 in the form:

s2 = 3
6 + q2 − 2

√
6− 9q2

36 + q2
and α =

3
µ

(v2
21 + v2

22)
2

F 2
1 (s2) + F2(s2)

(19)

with
q =

e sin f2

1 + e cos f2
.

Substituting these expressions into the first expression in Eq. (18) yields a nonlinear equation
in terms of the final true anomaly, f2:

p

1 + e cos f2
−

√
3µ

α(f2)
s2(f2)

3
2 = 0,

from which the value f2 = f2(p, e) may be found. This expression indicates that the initial
location of the spacecraft on the final orbit will depend only on parameters of this orbit.
Then, the unknowns r1, v11, and v21 are found directly from Eqs. (17)–(18) as functions of
ϕ1. Substituting f2(p, e) into the relationships in Eq. (19) and using s2 = sin2 ϕ2 yields

ϕ2(p, e) = arcsin

√
3
6 + q2(p, e) − 2

√
6− 9q2(p, e)

36 + q2(p, e)
(20)

and

α(p, e) =
3
p

1 + e2 + 2e cos f2(p, e)
F 2

1 (ϕ2(p, e)) + F 2
2 (ϕ2(p, e))

. (21)
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For the case when the initial range, r1 = r0, is given, the initial thrust angle ϕ1 can be
found from Eqn. (17) to be

ϕ1(p, e) = arcsin

[
a4r2

0

µ2

] 1
3

(22)

where

a = a(p, e) =
[
µα(p, e)

3

] 1
4

.

Substituting the values of ϕ1 and a into Eq. (17) yields the components of the initial velocity
of the low-thrust trajectory that will satisfy the conditions at the first junction, namely

v11 = v11(p, e, r0) = a(p, e)F1(p, e, r0), (23)

and
v21 = v21(p, e, r0) = a(p, e)F2(p, e, r0). (24)

Then, the final polar angle can be computed using Eq. (14) in the form:

θ2 = θ2(p, e, r0) =
1
4
(

3
tanϕ1(p, e, r0)

+ ϕ1(p, e, r0)) − 1
4
(

3
tanϕ2(p, e)

+ ϕ2(p, e)) + θ1. (25)

The number of revolutions of he spiral trajectory around the center of attraction may be
computed via:

Nrev =
θ2(p, e, r0)

2π
.

Consequently, the orientation of the parking orbit is defined as

ω = θ2(p, e, r0) − f2(p, e). (26)

It should be noted that the constant α is specified by the semi-latus rectum, p, and eccen-
tricity, e, of the final orbit. This constant is common between the systems Eqs. (17)–(18)
and permits us to compute the terminal kinematic characteristics of the transfer, that is,
the initial and final position and velocity vectors including the orientation of the parking
orbit and the number of revolutions of the spiral trajectory.

If the final mass, m2, the maximum level of power, Pmax, the flight time, t2, are specified,
then all constants, initial mass, m1, initial and final values of specific impulse, Isp1, Isp2,
respectively, can be found as functions of p, e, r0,m2, Pmax, and t2 as follows:

λv

b
=

2
5Pmax

(
d

t2
− 3α)

C

λv
=

Pmax

2
λv

b
− α

C1

λv
=

3k1z1(1 − 5s1)
3 − 5z1

m1 =
[

1
m2

− Pmax

2b
t2λ

2
v

]−1

Isp1 =
2

g0m1

b

λv
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Isp2 =
2

g0m2

b

λv

β1 =
2Pmax

I2
sp1g

2

β2 =
2Pmax

I2
sp2g

2

a =
Isp1gβ1

m1
= constant

J =
1
2
a2t2

where
d =

3z2k2(1 − 5s2)
3 − 5s2

− C1

λv

z1 =
√

µ

r1
(1 − 3s1)

z2 =
√

µ

r2
(1 − 3s2)

k1 = cosϕ1, k2 = cosϕ2

tc =
5
2
Pmax

λv

b
+ 3α

NUMERICAL RESULTS
As mentioned in the previous section, by specifying p, e, and r0, and consequently, finding
α (or a), one can obtain the initial and final position vector (r, θ) and velocity vector
(v1, v2), initial and final thrust angles (ϕ1, ϕ2), longitude of perigee, ω, and the number
of revolutions, Nrev, of the capture spiral. The solutions presented in this paper show
that these values are independent of the dynamical characteristics of the maneuver, namely
Pmax, Isp,m, β, a, and J . Following the solution process described in the previous section
and specifying rmin = 6870 ( corresponding to h0 = 500), and rmax = 6880 (corresponding
to p = 6874 and e = 0.00072 for the parking orbit), we find the final true anomaly on the
LT trajectory and thrust angle, that is, f2 = −1.5708, ϕ2 = −0.00036, and consequently,
α = 1.2165 × 10−12. Then, by specifying the initial range, r1 = r0, the initial thrust angle
is found to be ϕ1 = −0.0095. After α,ϕ1, ϕ2 are found, it can be shown that

v11 = −0.0125, v12 = −0.0055

v21 = 0.6565, v22 = 7.6143

ω = 4.2502, Nrev = 315.75

The corresponding integration constant is C1/λv = 0.65619. Then, by specifying t2,m2,
and Pmax, one can compute the other variables of the maneuver. Note that Pmax includes
the efficiency of the propulsion system, denoted by eeff . Several sets of computations have
been implemented in order to analyze the behavior of various parameters of the maneuver.
In the first set of computations, the following intervals are considered: 30 ≤ t2 ≤ 180 days,
3 ≤ Pmax ≤ 12 kw; and 200 ≤ m2 ≤ 600 kg. In order to change the parameters of the
parking orbit, the apogee distance is varied in the interval 6880 ≤ rmax ≤ 7370 km. In
particular, for the case when t2 = 120,m2 = 600, Pmax = 3, eeff = 0.6 and rmin = 6870,
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Table 1: Numerical results: t2 = 120 days, m2 = 600 kg, Pmax = 3 kw, eeff = 0.6,
rmin = 6870 km
rmax sin2 ϕ1 sin2 ϕ2 m1 Isp1 Isp2 β1 β2 J/g2

6880 9.1e-05 1.323e-07 685.342 1994.66 2278.37 9.4e-06 7.206e-06 0.003881
6890 0.00036 5.281e-07 685.284 1995.43 2279.06 9.39e-06 7.201e-06 0.00388
6910 0.00144 2.106e-06 685.175 1996.85 2280.32 9.38e-06 7.194e-06 0.00387
6950 0.00573 8.377e-06 684.821 2001.53 2284.49 9.33e-06 7.167e-06 0.00386
6990 0.01278 1.874e-05 683.971 2012.89 2294.60 9.23e-06 7.104e-06 0.00382
7050 0.02835 4.180e-05 681.028 2053.55 2330.87 8.87e-06 6.885e-06 0.00370
7130 0.05805 8.623e-05 672.660 2182.02 2446.26 7.85e-06 6.251e-06 0.00336
7210 0.09743 0.00014 658.495 2457.91 2697.54 6.19e-06 5.140e-06 0.00276
7330 0.17349 0.00026 629.467 3542.00 3715.96 2.98e-06 2.709e-06 0.00145
7370 0.20311 0.00030 619.540 4384.33 4527.20 1.94e-06 1.825e-06 0.00098

the results, presented in Table 1, have been obtained by varying the apogee distance, rmax.
The value of eccentricity that corresponds to the values of rmax shown in Table 1 varies
from e = 0.0007272 to e = 0.03511.

It can be seen from the data in Table 1 that as the parking orbit becomes more elliptical,
the maneuver becomes more effective and the optimal specific impulse increases. It can be
shown also that in this case the number of revolutions decreases from Nrev = 315.75 to
Nrev = 6.54 and the initial thrust angle, ϕ1 approaches the trajectory tangential direction.
Analysis show that initial velocity and the number of revolutions are sensitive to changes in
initial thrust angle as illustrated in Fig. 1 and 2. Using the results of the previous section,
we note that this dependency is not sensitive to changes in the parameters of parking orbit.

It can be observed from Table 1 and Fig. 3 that while the spacecraft is spiraling, the
thrust angle and total velocity increase. It is important to note that each set of the perigee
and apogee of the parking orbit and the initial range specify the shape of spiral trajectory
and number of revolutions that are not dependent on other parameters of the maneuver.
This can be seen from the Fig. 4 and Fig. 5 that have been generated for e = 0.000727 and
e = 0.0303. It can be shown that an increase of the eccentricity by more than forty-five
times results in reducing the Nrev from about 315 to 4.5. The computations have been
implemented for values of maximum power from 3 kw to 12 kw and for final mass from 200
kg to 600 kg.

The solutions presented in the previous section permit us to generate time histories of
all variables at different values of maximum power and final mass. The time histories of
mass and specific impulse are shown in Fig. 6 and Fig. 7 for Pmax = 3 kw and m1 = 300 kg.
The Fig. 6 shows almost linear relationship between time of flight and the current mass.
The same relationship can be observed in Fig. 7 between the specific impulse and the flight
time allowing us to conclude that the optimal specific impulse is almost constant as the
flight time is increases. The same qualitative notes can be made from such dependencies
for other values of power and final mass.

Figures 8, 9, and 10 have been generated to show the relationships of the initial values
of specific impulse, mass and thrust acceleration with power as independent variable while
fixing times of flight and parameters of parking orbit. The plots show that higher values
of power will result in higher values of the specific impulse, lower values of the initial mass,
and lower and constant values of the thrust acceleration while the flight duration increases.

10



In
iti

al
 v

el
oc

ity
, k

m
/s

Initial thrust angle, rad x 10-3

Figure 1: Initial velocity versus initial thrust angle for e = 0.0007272 and p = 6874 km.
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Figure 2: Number of spiral revolution versus initial thrust angle for e = 0.0007272 and
p = 6874 km.
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Figure 3: Thrust angle ϕ vs vtotal for e = 0.0007272 and p = 6874 km.

Figure 4: Capture spiral trajectory for r1 = r0, e = 0.0007272, and p = 6874 km.
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Figure 8: Initial specific impulse versus maximum power.
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Figure 11: Cost function versus eccentricity of parking orbit at various flight times.

The final set of computations show the behavior of the parameters of the low-thrust
maneuver while the eccentricity of parking orbit varies. Figures 11 and 12 show the behavior
and sensitivity of the cost function to changes in eccentricity and in the shape of the parking
orbit by increasing apogee distance. The cost can be minimized by choosing the largest
eccentricity and highest apogee. Near-circular parking orbits result in higher values of the
cost and larger number of spiral revolutions.

Figures 13–15 show that by specifying a higher parking orbit or by increasing the ec-
centricity (or apogee), the initial mass flow-rate and cost function can be decreased, while
allowing initial specific impulse to increase slowly and almost linearly. But if the perigee
and apogee are lower, the initial specific impulse becomes more sensitive to small changes
in the eccentricity. It is important to note that the solutions for LT arcs being used in
this problem can not be used to the capture to exactly circular parking orbits with zero
eccentricity.

CONCLUSIONS
The variational problem of determining optimal trajectories of spacecraft equipped with

power-limited propulsion systems has been considered. Analytical solutions to the prob-
lem were presented in a convenient form for further applications, in particular, in order
to use them to determine low-thrust capture maneuvers. These solutions describe motion
with low-thrust variable specific impulse and maximum level of power along spiral trajec-
tories around a center of attraction. Illustrative examples of optimal low-thrust capture
maneuvers were used to demonstrate the solutions. The computations with various sets of
parameters permit us to conclude that planetary capture maneuvers can be analyzed using
the analytical solutions for low-thrust motion presented in this paper.
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Figure 12: Cost function versus eccentricity of parking orbit at various apogees.
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Figure 13: Mass-flow rate versus eccentricity of parking orbit at various apogees.
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